Subject order-independent group ICA (SOI-GICA) for functional MRI data analysis

نویسندگان

  • Han Zhang
  • Xi-Nian Zuo
  • Shuang-Ye Ma
  • Yufeng Zang
  • Michael P. Milham
  • Chaozhe Zhu
چکیده

Independent component analysis (ICA) is a data-driven approach to study functional magnetic resonance imaging (fMRI) data. Particularly, for group analysis on multiple subjects, temporally concatenation group ICA (TC-GICA) is intensively used. However, due to the usually limited computational capability, data reduction with principal component analysis (PCA: a standard preprocessing step of ICA decomposition) is difficult to achieve for a large dataset. To overcome this, TC-GICA employs multiple-stage PCA data reduction. Such multiple-stage PCA data reduction, however, leads to variable outputs due to different subject concatenation orders. Consequently, the ICA algorithm uses the variable multiple-stage PCA outputs and generates variable decompositions. In this study, a rigorous theoretical analysis was conducted to prove the existence of such variability. Simulated and real fMRI experiments were used to demonstrate the subject-order-induced variability of TC-GICA results using multiple PCA data reductions. To solve this problem, we propose a new subject order-independent group ICA (SOI-GICA). Both simulated and real fMRI data experiments demonstrated the high robustness and accuracy of the SOI-GICA results compared to those of traditional TC-GICA. Accordingly, we recommend SOI-GICA for group ICA-based fMRI studies, especially those with large data sets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of IVA and GIG-ICA in Brain Functional Network Estimation Using fMRI Data

Spatial group independent component analysis (GICA) methods decompose multiple-subject functional magnetic resonance imaging (fMRI) data into a linear mixture of spatially independent components (ICs), some of which are subsequently characterized as brain functional networks. Group information guided independent component analysis (GIG-ICA) as a variant of GICA has been proposed to improve the ...

متن کامل

Comparison of multi-subject ICA methods for analysis of fMRI data.

Spatial independent component analysis (ICA) applied to functional magnetic resonance imaging (fMRI) data identifies functionally connected networks by estimating spatially independent patterns from their linearly mixed fMRI signals. Several multi-subject ICA approaches estimating subject-specific time courses (TCs) and spatial maps (SMs) have been developed, however, there has not yet been a f...

متن کامل

Model-free fMRI group analysis using FENICA

Exploratory analysis of functional MRI data allows activation to be detected even if the time course differs from that which is expected. Independent Component Analysis (ICA) has emerged as a powerful approach, but current extensions to the analysis of group studies suffer from a number of drawbacks: they can be computationally demanding, results are dominated by technical and motion artefacts,...

متن کامل

Preserving subject variability in group fMRI analysis: performance evaluation of GICA vs. IVA

Independent component analysis (ICA) is a widely applied technique to derive functionally connected brain networks from fMRI data. Group ICA (GICA) and Independent Vector Analysis (IVA) are extensions of ICA that enable users to perform group fMRI analyses; however a full comparison of the performance limits of GICA and IVA has not been investigated. Recent interest in resting state fMRI data w...

متن کامل

Group Ica of Functional Mri Data: Separability, Stationarity, and Inference

Independent component analysis (ICA) is being increasingly applied to functional MRI (fMRI) data. A principal advantage of this approach is its applicability to cognitive paradigms for which detailed a priori models of brain activity are not available. ICA has been successfully utilized to analyze singlesubject fMRI data sets, and we have recently extended this work to provide for group inferen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 51 4  شماره 

صفحات  -

تاریخ انتشار 2010